
188
Naval Surface Warfare Center, Dahlgren Division Technical Digest

COMBAT SYSTEM ARCHITECTURE

Mr. James D. Horner

Combat system architecture is defined in terms of conveying requirements utilizing specific
modeling elements generated during development. Combat system requirements are charac-
terized as conveying either performance- or quality-type attributes. Architecture constructs
are shown as potentially consisting of functional, design, or implementation elements. Func-
tional elements represent a refinement of top-level performance requirements. (Conceptual)
design elements define the system interfaces needed for conveying system quality attributes.
Architecture may also include implementation elements of those system functions that are of
high concern. A combat system functional model is presented that identifies the primary
decision and control processes. A consistent knowledge base is identified in this model as key
in automating supervisory functions. A combat system design model is also presented. This
model derives from the functional model and identifies the major combat system (functional)
interfaces. A discussion is provided of each of the major combat system functions.

INTRODUCTION

A properly defined architecture is key in developing cost effective and capable combat systems. It
establishes the technical vision of what the combat system needs to do and how it is to do it. It
clearly conveys to the designers the important requirements and their performance measures.
Most importantly, architecture must capture the organizational and design concepts so they can
be modified and enhanced in the future.

In this article, architecture refers to combat system hardware (HW), software (SW), or devices.
That is, it is assumed that some initial functional allocation has been made between system HW/
SW and ship personnel. For ship systems, these allocations need to be supported through process
analysis of shipboard operations. Through operational analysis, ship functions and their timing
attributes are identified and defined. Allocations are made of those functions to either humans or
machines based on life-cycle cost versus performance trade-offs.

Defining architecture means determining those aspects of the combat system that are to be
specified by the architecture. Fundamentally, it is the system requirements that must drive the
architecture design. Thus, what needs be identified are those combat system requirements that
should be specified at the architectural “level.” It also needs to be determined how these specifica-
tions may be best represented.

A basic criterion for architecture is that it is useful for designing and/or implementing the combat
system. Thus architecture is generally thought of as a top-level system design. However,

189

COMBAT SYSTEM ARCHITECTURE

1999 Issue—Future Surface Combatants: Engineering the 21st Century Navy

depending on the system and its requirements, there
may be other useful elements. As an example, it may
be appropriate in some instances to mandate the use
of certain low-level interface standards prior to
development. This may be the case for systems with
relatively lax performance requirements but very
stringent interoperability requirements. However,
for other systems, low-level interface requirements
would more appropriately be defined during
detailed design or implementation.

Because architecture definition is part of develop-
ment, examination of the development phases should
reveal likely candidates for combat system architec-
tural elements. The system development phases or
activities may be broken down into requirements
analysis, functional analysis, design, and implementa-
tion. Thus, an architecture may specify either design
or implementation aspects of the combat system. In
addition, the architecture may contain elements from
the functional analysis phase.

Thus, it is important to identify those elements from
the various development activities that may com-
pose the combat system architecture. It is also
important to identify the types of combat system
requirements that are appropriately conveyed by
those elements. It will be shown that the elements
required for a combat system architecture are very
much dependent on the nature of the combat
system and its critical requirements.

COMBAT SYSTEM ARCHITECTURE REQUIREMENTS

Architecture addresses some set of key requirements
of the combat system. That is, the combat system
architecture specifies certain system design or
implementation characteristics or constraints. A
general characterization of combat system require-
ments may thus be useful in identifying architecture
elements. From this characterization, those require-
ments that may best be specified at the architectural
level can then be identified.

Combat system requirements can come from many
different sources and considerations. However,
many types of requirements are implied through

operational analysis. That is, mission requirements
infer operational requirements that in turn infer
requirements onto the combat system. In particular,
much of the system performance-related require-
ments discussed below are inferred through opera-
tional analysis. In this respect, it is important that
operational analysis is performed in such a way as to
maintain traceability throughout the phases of a
requirement’s refinement.

Performance requirements are defined here as those
that address behavioral, interface, or environmental
aspects of a combat system. Interface may refer to
both the combat system external and internal
interface requirements. External interfaces include
external system communications protocols, legacy
system interfaces, and human-computer interfaces
(HCIs). Requirements for interoperability establish
many of the external-interface-type requirements.
External interface requirements could also include a
host of other system constraints that allow for such
things as hookups for power or standards for
physical mounting and transportation.

Behavioral requirements refer to requirements for
how the combat system must interact within its
defined environment. Behavioral requirements
specify how and when the system must respond.
This includes functional and timing requirements.
At the (combat system) context level, behavioral
requirements are identified through analysis of
scenario definitions and threat descriptions. Finally,
performance requirements include the environmen-
tal requirements of the combat system. These
requirements specify the environmental conditions
within which the combat system must operate
(effectively). Environmental conditions include
temperature, humidity, shock, vibration, moisture, etc.

There are other types of combat system require-
ments that, according to the definition provided,
are not strictly performance requirements. One
class of these is the requirements for availability
and reliability (ARM). Requirements for availability
are typically divided into inherent availability (Ai)
and operational availability (Ao). Ai generally refers
to the percent time the system would be opera-
tional without maintenance. Ao refers to the

190
Naval Surface Warfare Center, Dahlgren Division Technical Digest

COMBAT SYSTEM ARCHITECTURE

percent time the system is required to be opera-
tional, given that certain specified maintenance
procedures are followed.

Requirements for reliability address the need for
the system to be operational during critical times.
That is, regardless of the system’s Ao, it must also
maintain some minimum capability during mis-
sion-critical times. Requirements for fault toler-
ance address many system attributes that can
impact both reliability and availability. Fault
tolerance is an important quality attribute of
mission-critical systems.

There is another important class of quality-related
requirements that address combat system life-cycle
costs. These are requirements for system flexibility,
upgradability, and maintainability. System require-
ments for maintainability address (owner) costs of
maintenance. Maintainability is often grouped with
ARM, accentuating the trade-offs involved between
quality and cost.

Flexibility generally refers to the ease with which the
combat system may be reconfigured to support
alternative (future) shipboard operations. Upgrad-
ability is the ease to which future enhancements or
technology updates may be accomplished. These
types of requirements are difficult to directly quan-
tify because they involve predictions of technology
trends. However, there are (architectural) character-
istics of a combat system that can be used to gener-
ate relative measures of flexibility and upgradability.
Examples of these characteristics are the degree of
modularity and interface standards use.

Thus, three major categories of combat system
requirements have been identified. Performance
requirements identify the basic behaviors and
characteristics required of the combat system. The
second category identifies quality attributes related
to fault tolerance, reliability, and availability. The
third category identifies those quality attributes
related to life-cycle ownership costs. Part of the
requirement’s definition process is defining the
appropriate degree of requirement’s specificity.
Similar to the requirement’s definition process, this
is a continual refinement process that requires

knowledge of applicable technologies (and the
requirements themselves).

ARCHITECTURE FUNCTIONAL ELEMENTS

Functional modeling is an important phase of the
development process. This is true regardless
whether the models are considered necessary in
establishing (architectural) requirements or some
element of the architecture itself. Functional models
provide a structured means of analyzing and
conveying many and much of the performance-type
requirements of a system.

Functional analysis is not design. Design is a synthe-
sis process and in this regard, is opposite to func-
tional analysis. The structured analysis models and
specifications resulting from functional analysis are
implementation independent. That is, they do not
imply any particular physical realization. Although
functional analysis is implementation independent
and is not design, it cannot be considered design
independent. Indeed, functional analysis is a pri-
mary means of establishing design requirements.

Functional analysis is a continuation of require-
ments analysis and is required for understanding
system functional requirements, their related
performance factors, and for generating verifiable
specifications. At the requirements analysis phase,
the combat system is initially viewed as a “black
box.” Requirements produced at this level of ab-
straction may or may not be verifiable. In addition,
an understanding of internal system functions is
typically required to gain confidence of black box
specifications. This depth of understanding can be
achieved only through functional analysis.

It is through functional analysis that the core or
essential characteristics of combat systems can be
modeled prior to design. Today, functional analysis
for complex systems is primarily accomplished
through structured analysis methods. The system
descriptions resulting from these analysis methods
are often referred to as essential models because they
capture the essential nature of the system. The
models provide well-defined conceptualizations of a

191
1999 Issue—Future Surface Combatants: Engineering the 21st Century Navy

COMBAT SYSTEM ARCHITECTURE

system’s data/information, functions/processes, and
timing/control aspects.

Initially, functional analysis is focused on (what
turns out to be) the application SW of the system.
That is, the analysis must first reveal what the
system must do. The application-level functional
models can then be used to infer requirements for a
supporting “middleware,” operating system (OS)
and/or HW capability. Middleware includes com-
munications, data management and other “common
services” and utilities to support system applications.

Functional modeling is typically done at levels
below the applications layer in those cases where
these layers may need to be custom built. That is,
when the requirements of the system are such that a
commercial off-the-shelf (COTS) or other reuse-
type component may not be adequate. As an ex-
ample, functional analysis is rarely performed at all
when instituting a networked personal computer
(PC) system aimed at business use. Alternatively, the
primary application SW in certain warfare areas
may itself be middleware. That is, in cases where the
primary requirement is to provide communications
or data-management capabilities, it is important to
focus the analysis on these types of functions.

Thus, there can be inferred a general guideline for
inclusion of functional modeling elements resulting
from functional analysis in a combat system archi-
tecture. The guideline is to include those functional
modeling elements that establish the key system
requirements (design drivers). As an example,
command, control, communications, computers,
and intelligence (C4I) systems can be viewed as data
driven. That is, the core requirements are those for
storing, distributing, and otherwise managing data.
Thus, the data (or object) schema of the C4I system
should certainly be included as part of the architec-
ture. In addition, the C4I system architecture should
include general descriptions of the mechanisms
required for controlling data updates and access.

Alternately, an antisubmarine warfare (ASW)
system design may be characterized as functionally
driven. Although ASW systems certainly have
requirements for real-time and data management, it

is the fusion algorithms and tactical decision aids
that drive system design. Because of the nature of
the data, sophisticated algorithms are required for
sensing and tracking contacts. In addition, complex
applications are needed for analyzing the underwa-
ter environment and providing tactical decision
support. Thus, in the case of ASW, the functional
analysis should concentrate on identifying, defin-
ing, and classifying functions. These functional
descriptions would be a key element to the combat
system architecture.

Another combat system may have stringent timing
and control requirements. For example, in antiair-
craft warfare (AAW), there are stringent timing
requirements for both the processing of measure-
ment data and countering threats. However, because
AAW data becomes quickly outdated, there are
minimal requirements for data management in the
traditional sense. Indeed, because of the character of
the data, AAW data management distills down into a
performance-driven data distribution problem.
Thus in the case of AAW, the analysis results of the
timing and control aspects of the system should be
represented by the combat system architecture.

It is noted, however, that stringent timing require-
ments tend to impose stringent requirements on
all aspects of system design. Detailed functional
analysis is often required at all architectural levels
of the system for appropriate specifications. That
is, it cannot be assumed that there exists an
adequate COTS solution or interface standard for
any system components, including HW. Those
COTS components that are incorporated may need
to be utilized or integrated in unusual ways. In
addition, sophisticated process control mecha-
nisms, such as prioritization and synchronization,
are often required.

Thus, the amount and type of functional modeling
that is used to establish combat system architecture
is dependent on the nature of the particular require-
ments. In addition, many of today’s ship systems are
being reengineered or enhanced for new capabilities
or mission areas. For most of these legacy systems,
there may have been no formal functional analysis
completed. In cases where functional analysis was

192
Naval Surface Warfare Center, Dahlgren Division Technical Digest

COMBAT SYSTEM ARCHITECTURE

performed, the methods used might be considered
by today’s standards as outdated, unstructured, or
not applicable to current technologies.

In any case, functional analysis of legacy systems is
necessary to gain the level of understanding re-
quired for either enhancing or reengineering. It
provides a means of viewing current capabilities at
various levels of detail and insight into the coupling
between system components or (SW) modules. In
addition, functional analysis can identify the un-
documented performance requirements of a system.
Thus, in the case of legacy system reengineering, the
results of functional analysis would be a key element
to the architecture description.

Functional analysis produces models that are
capable of capturing and conveying performance-
type requirements for system behavior and inter-
faces. However, functional analysis is generally
performed only for new developmental items. That
is, it is performed only for those combat system
functions and to the level of detail needed to
establish verifiable system specifications. The type of
system functions analyzed and the amount of detail
required vary according to the specific nature of the
combat system requirements.

ARCHITECTURE FUNCTIONAL MODEL

Functional analysis provides methods for analyzing
the functional, data, and control nature of a system
in a top-down fashion. However, a combat system
functional concept is extremely useful in establish-
ing a reasonable starting point for the analysis. A
combat system concept can convey the lessons
learned in past analysis and design efforts. It pro-
vides a high-level partitioning of system functions
that provides guidance for performing the analysis.
Without such guidance, many iterations of func-
tional decomposition and synthesis are required to
establish a reasonable top-level system partitioning.

A starting point for modeling the functional nature
of a combat system is the H-Architecture. The H-
Architecture identifies sense, control, and engage as
the three primary functions of a combat system.

This is important in that it identifies warfare as
primarily a control problem. The H-Architecture
is also fractal in nature. That is, combat systems
have core control elements at all levels of com-
mand and operation. Indeed, even in those cases of
“smart weapons,” the Sense, Control, and Engage
Model is valid.

In today’s Navy, there is an emphasis on crew
reduction and human-centered design. Both of
these can be viewed as thrusts to develop more
cost-effective systems. The emphasis is in obtain-
ing greater system efficiencies through automation
and by incorporating the operator as part of the
system design.

Architecture has been defined for the purposes of
this article as referring to those combat system
functions not allocated to the human operators.
However, achieving either of the above objectives
for efficiencies and effectiveness requires consider-
ation of the human functions in combat systems.
That is, the combat system functional concept
should not bias resource allocation decisions
towards either a human or HW/SW solution. In
this way, resource allocation decisions can be
revisited throughout development.

Figure 1 presents a conceptual functional model of
the control part of a combat system that attempts
implementation neutrality. A good way to view the
model is that of a generalized controller for
complex systems. In this control model, knowledge
supports decision-making (through information
processing) that, in turn, supports control.

The combat control model of Figure 1 is concep-
tual in two ways. First, the functions generally
apply only to either human functions or applica-
tion-level control SW. That is, it does not include
inferred system functions. Second, it does not
have the formalism of a structured functional
model. In this regard, it represents a combat
system functional concept for the purpose of
providing guidance for functional modeling. Note
that similar to design modeling, functional
modeling can iterate from the conceptual to the
detailed level.

193
1999 Issue—Future Surface Combatants: Engineering the 21st Century Navy

COMBAT SYSTEM ARCHITECTURE

A functional model should capture two key aspects
of combat system architecture. First, it should
capture the process nature of the system (informa-
tion processing and control). Figure 1 identifies two
primary combat system process flows. Tactical
information is processed (left-to-right flow) in the
Decision Processing Layer. In addition, this figure
models a control support process (down-to-up)
whereby the lower (functional) layers provide
support to the next higher layer. These are two
distinct, but interrelated and coupled, processes.

The second key aspect to architecture is structure.
There are structural or organizational aspects to
combat system architecture at all levels, from the
command structure to the computing system
structure. However, architecture structure can be
seen as an alternate view of process. As shown in
Figure 1, process flow can be arranged in such a way
that conveys the structural or organizational aspects
of the system. For example, a process model of the
Action Control Layer can be constructed in such a

way that it conveys organizational requirements of
the command structure.

Process modeling, then, can be used for defining
both process and structural views of combat system
architecture. However, this requires an expanded
definition of the control aspects of combat systems.
The Action Control Layer of Figure 1 controls the
internal combat system processes in addition to the
combat resources (sense and engage). In particular,
it controls the tactical situation through effective
control of combat system processes.

Modeling the internal control (and decision-
making) processes as they relate to control of
warfighting assets can establish both the process and
structural aspects of combat system architecture.
However, it is both the functional nature of the
control-decision support systems and the capabil-
ities of the assets available that will determine the
control structure of the ship. Thus, it is necessary
that the combat system design be performed

Figure 1—Combat Control Functional Model Concept

194
Naval Surface Warfare Center, Dahlgren Division Technical Digest

COMBAT SYSTEM ARCHITECTURE

concurrently with that of the ship command and
control system.

Control & Coordination Layer

The Action Control Layer of Figure 1 models the
high-level control aspects of a combat system.
Assuming that the fundamental purpose of a
combat system is to maintain (tactical) control, then
the Action Control Layer must establish the core
requirements for the remainder of the system. That
is, the requirements for warfare control are the key
combat system requirements.

The Action Control Layer provides for ship and ship
resources control. This includes control over Sense
and Engage functions. Control or management of
device-type resources is a relatively low-level
monitoring, scheduling, and control function.
Alternately, management of personnel requires
inputs such as status reports and recommendations.
Personnel are managed through orders or other
types of guidance. Thus, resource management can
have both supervisory and nonsupervisory aspects.
These two different aspects of control need to be
identified and properly characterized in order to
consider it, or portions of it, for automation.

The Action Control Layer identifies a second control-
type function or activity termed Coordinate. This
function acknowledges that intelligent control over
resources inevitably involves coordination with
other intelligent control agents. Thus, combat
system functions that coordinate between control
agents are modeled as distinct from those directly
involved in the control of ship resources. Effective
design of coordination functions requires consider-
ation (analysis) at all levels of command and
operations. Determining all possible external
impacts of coordinating the control of resources is,
in itself, a difficult control problem. However, it is
important because control coordination establishes
the context for the combat system control problem.

Another difficult aspect to control is in determining
the most effective time to react. In cases where there
is a need for quick, reactionary control, decisions

can be justifiably made without the benefit of
planning. Thus, combat control must be based on
some adaptable weighting of the current scene (and
its history), assessments that have been made, and
current combat plans (see Decision Processing Layer
of Figure 1). Humans are particularly good at
performing adapted or situational-based weighting.
However, as ship control systems become more
automated, greater analysis will be required of this
difficult aspect to complex control.

Functional and process analysis can be used to
model the command and control necessary to
achieve the various mission objectives. That is, the
analysis can identify effective paths of control
through the command structure to the warfighting
assets. The analysis can also identify the information
requirements (from the Decision Processing Layer)
needed to support command and control decisions.
These kinds of control analysis are required for new
combat systems development. However, they are
also critical for achieving integrated capability
across multiple warfare areas. These command and
operational control models are thus important
elements of combat system architecture.

Decision Processing Layer

The Decision Processing Layer of Figure 1 produces
the information required for decision-making. An
important aspect of this layer is that each of the
outputs of three major Decision Processing sub-
functions should be available for real-time control
(automated or otherwise). These functions provide
to command the information and recommendations
necessary for effective and timely control. Alter-
nately, these functions must operate under com-
mand directive. Directives (such as guidance, orders,
or acceptance of recommendations provided)
control resources by controlling the flow and
processing of information.

The Associate & Fuse functions associate and fuse
measurement, track, and surveillance data. This
requires the modeling of threat characteristics,
ownship sensor performance, and the environment.
In addition, the Associate & Fuse function implies an

195
1999 Issue—Future Surface Combatants: Engineering the 21st Century Navy

COMBAT SYSTEM ARCHITECTURE

information and data management capability for the
storing and distribution of tactical scene information.

There are important coordination aspects in
maintaining a coherent and consistent tactical
scene across warfare areas and command levels.
Wider scene information from higher command
levels should be provided for more optimal associa-
tion of own data. The Action Control Layer coordi-
nates this and the sending of partial scene
information to the next higher level of command
for association and/or fusion.

The Associate & Fuse functions must respond to
control from the Control & Coordination Layer. One
reason this is important is to control the level of
fidelity of fused information being reported up the
command chain. For example, it may in some
instances be effective to provide relatively low-level
sensor measurement data to shore-based command
stations. However, doing so continuously would
quickly overwhelm computing, communication,
and operator resources.

Achieving the Navy goal of a shipwide coherent and
consistent tactical scene will require analysis of both
the data/information and control/coordination
aspects to fusion. This is necessary to ensure that the
appropriate data is fused at the appropriate (com-
mand) level and at the appropriate time. It is also
necessary because automated association and fusion
algorithms typically operate on the assumption of
data independence. The control and data models
resulting from these analyses are an important part
of combat system architecture.

The Assess & Evaluate function provides
assessments based on the current scene and its
history. Threat assessments, situational assessments,
kill assessments, etc., are performed within this
functional area. Assessments derive information
based on time-history patterns of behaviors and
relations. Threat identifications and their intent can
often be inferred from the scene and its history. In
addition, certain threat formations can indicate
likely future behaviors. Perhaps most importantly
are evaluations of relative (ship-to-threat) strengths
and weaknesses. This is important in indicating the

appropriate posturing of ownship (defend, attack/
prosecute, monitor, avoid) and thus the type of
plans that need generated.

At the tactical warfare level, the Plan function of
Figure 1 conducts planning within the overall
context of mission objectives. Tactical plans may
need to be continuously modified based on current
tactical situation. Plans reflect some weighting of
ship postures driven by mission objectives and
current situation. Assessment and planning func-
tions have traditionally been allocated to humans.
They most often require human-type knowledge
and experience. The exception is in the AAW
warfare area, where many assessment functions
have been automated because of the stringent
timing requirements.

Functional analysis can be used to identify common
functionality across a system. Identification (and
separation) of common functionality in the Decision
Processing Layer is especially important. This is
because common functions throughout a decision-
making process must be made identical in order to
ensure consistency. In fact, functional analysis of
combat systems reveals that common functionality
does exist and can be characterized as knowledge.

Knowledge Layer

The Knowledge Layer of Figure 1 recognizes the
important role of knowledge in support of deci-
sion-making. In both humans and combat sys-
tems, knowledge and its role in support of
decision-making are often assumed. Identifying
knowledge functions is important in determining
the ease in which combat system functions can be
automated. It also reveals the need for knowledge
consistency across system components—machine
and human alike.

Knowledge is defined in this model as that which
enables the prediction of future occurrences. In this
sense, having knowledge about something implies
that some aspect of its behavior can be predicted. It
is this ability to predict that enables interaction with
the environment in other than a reactionary mode.

196
Naval Surface Warfare Center, Dahlgren Division Technical Digest

COMBAT SYSTEM ARCHITECTURE

Knowledge can pertain to knowledge of the physical
environment, personnel, or man-made objects such
as ownship or threats.

One type of knowledge is the ability to predict based
on real-world models. The Predict function of
Figure 1 provides the capability to project the
tactical scene into the future. Note that this encom-
passes capabilities for predicting the performance of
ownship assets, including personnel. The (physical)
environment, objects, events and, most importantly,
their uncertainties are projected into the future
based on behavioral models.

It can be noted that each of the functions in the
Decision Processing Layer depends on prediction
capability. For example, measurement-to-track
geographical correlation requires projection of a
track to the time of current sensor update. Projec-
tion of track position and uncertainty is performed
in accordance to appropriately selected platform
motion models. Similarly, prediction capability is
key to making situational assessments and con-
ducting planning.

The second kind of knowledge in this control model
is referred to as Know. This knowledge can be
thought of as “rules of thumb” that have been
gained from the past. For combat systems, they are
rules that are represented heuristically in knowl-
edge-based systems or deterministically in doctrine
servers. It represents the capture of lessons learned
through either real-world experience or off-line
simulations. The Know functions can support the
assessment and planning functions with doctrine-
to-scenario matching capabilities. Although typi-
cally faster than real-time modeling and simulation,
this type of knowledge can also be less flexible.

Segregation of knowledge functions is also impor-
tant to combat system design. Knowledge func-
tions require special treatment regarding
maintenance. Knowledge functions also require
special expertise in their development and are
prime candidates for continual off-line upgrades.
Knowledge, for both humans and machines, can
become outdated and thus must be periodically
checked for validity. Knowledge functions also

have issues of ownership that are inherently
different from many other types of SW.

Knowledge can take many forms in combat systems.
As combat systems become more automated, issues
regarding the use, development, maintenance, and
validation of stored knowledge will become more
acute. As regards architecture, knowledge required
for effective performance of combat system func-
tions needs to be identified. There are many combat
system functions or algorithms that inherently have
knowledge components. These include most “intelli-
gent” or nongraphics-based tactical decision aids.
For these functions, the knowledge components
should be partitioned out. This is important for
future systems maintenance and to ensure consis-
tency across automated combat system functions.

ARCHITECTURE DESIGN ELEMENTS

Functional models include functional elements with
specified relationships between the elements.
Functional elements include the functions them-
selves, dataflows between the functions, and various
types of control elements and other constructs to
describe system timing. Functional modeling
elements incorporate various attributes that define
them and, in addition, have specific relationships to
each other that together define the model. Like-
elements typically are related by relationships that
specify decomposition. For example, both functions
and dataflows can be decomposed. Dataflows are
related to functions in terms of input and output
relationships. Triggers, a type of functional model-
ing element that effects the timing of functions, also
are related to functions in terms of input and
output. Additional control constructs are typically
required to completely specify the timing aspects of
a system in the functional model.

Combat system architecture may also directly
address the important design aspects of a system.
Indeed, architecture is often characterized as a top-
level or conceptual-system-level design. System
design first requires that remaining required system
functions be derived from the functional models. In
the case where functional modeling was done only
at the application level, the amount of derived

197
1999 Issue—Future Surface Combatants: Engineering the 21st Century Navy

COMBAT SYSTEM ARCHITECTURE

functionality may be extensive. In other cases, it may
involve only HW or ancillary functions such as data
recording and playback.

In design, the function, data, and control elements
are organized into systems. System interfaces are
identified and specified. At the lowest level, SW
modules or HW components are designed in detail.
Detailed design is often referred to as implementa-
tion. For SW modules this involves the writing of
actual code for the functions. For HW components
this involves designing the circuits or other types of
components. At all levels of design, decisions are
made regarding reuse.

Architecture design elements specify the interfaces
between defined functions. This is different than
architecture functional elements where system
functionality, as opposed to system functions, are
specified. In the case of architecture design ele-
ments, the functional analysis has been completed
for the entire system. In addition, the interfaces
between functions have been specified in terms of
data formats and protocols. Alternately, in the case
of architecture functional elements, the functional-
ity of the system can be specified at any level of
detail. That is, there may remain implied functional-
ity that needs to be specifically derived. In addition,
internal system interfaces may be identified but not
necessarily defined in detail.

Many system requirements can be adequately
addressed only during design. These include the
requirements for ARM, flexibility, and upgradabil-
ity. Note that each of these reflect “quality” at-
tributes of the combat system. To the extent that a
combat system architecture is characterized as a
top-level design, it is primarily addressing the
quality attributes of the system. Notions of main-
tainability, flexibility, and upgradability are difficult
to quantify outside the context of system design.
That is, without referring to a particular top-level or
conceptual design, it is difficult to establish these
types of system attributes or to estimate costs of
their implementation.

However, requirements for maintainability, flex-
ibility, and upgradability may be partially

addressed through requirements for modular and
open systems design. Modularity can have various
forms. For SW, modularity is the key to well-
written code. Modular code has the characteristics
or attributes of data-independent functions,
functionally partitioned, portable applications,
common utility-support modules, and standard-
ized interfaces. Object-oriented programming
addresses many of these attributes. However, to
meet quality-related requirements for application
SW, it is most important that the customer also
gain ownership of the source code.

Thus, many important requirements are specified in
terms of top-level design. Similar to the functional
models, it may be necessary to specify only basic
functional organization at the application level
(conceptual design). This is true for two reasons.
First, application SW requirements can impose or
infer requirements for quality on the system
middleware, HW, and its OS. Second, these lower
level support components are often standardized in
terms of both functionality and interface.

However, it is not always possible to address total
system requirements at the application SW design
level. Doing so, very much depends on the particu-
lars of the combat system. In the case of mission-
critical systems with stringent timing requirements,
a conceptual design of the entire system may be
necessary to specify the quality attributes of the
combat system.

Layered Services

One method commonly employed in organizing
functions in a modular fashion is the client-server
model. In this model, servers generally respond to
requests from clients and clients wait on servers to
respond to those requests. An important type of
server is the data server that provides (well-defined)
access control to the data. This type of architecture
puts numerous constraints on the system design
that can impact performance. The client-server
organization may slow performance because the
server can be a bottleneck for responding to data
requests. However, it is considered a powerful
means of simplifying system design and achieving,

198
Naval Surface Warfare Center, Dahlgren Division Technical Digest

COMBAT SYSTEM ARCHITECTURE

in the case of data servers, data-application inde-
pendence (decoupling).

A layered architecture model can be viewed as a
generalization of the client-server model. It is
similar to the client server, but there are multiple
layers of services, and the kind of service provided is
not limited to data management. The basic con-
straint is that lower level services (functions)
respond only to requests from higher level services
and, preferably, only the next higher level. An
example of this type of organization are the various
communications protocol “stacks.” Between each
layer are well-defined and, whenever possible,
standardized interfaces.

Each interface and service layer can potentially
impart performance degradation on the system in
terms of speed, capability, and flexibility. However,
relaxing the requirement that services can be
provided only by the next lower architectural level
can greatly mitigate this; i.e., by allowing for “drill-
down” through the services layers.

Object Design

Another powerful architecture design construct is
objects. Objects provide an intuitive approach for
combining functions (methods) and data (character-
istics) into modules that can be better understood
and thus can better support system upgrades and
growth. The object paradigm also provides many
(nonarchitectural) benefits for SW development. The
most important of these benefits is reduced new-
code development through various reuse mecha-
nisms (inheritance, composition, and templates).

Another useful architecture feature of objects is
that they allow designers to completely specify
object interfaces before designing the object itself.
The object interfaces are specified by defining the
object class structure, which also establishes
object inheritance relationships. Indeed, SW
design using the object paradigm can be consid-
ered equivalent to defining the object classes.
Writing the code for the object methods (func-
tions) that maintain the characteristics (data) is
then viewed as SW implementation.

There are three main areas of object design: appli-
cation, data management, and communications
object design. Each of these areas requires a different
approach corresponding to the unique system
capabilities they provide. In addition, application
objects for HCIs and non-HCI SW can also have
unique object design requirements.

Object-to-object communication supports develop-
ment of peer-to-peer applications, whereby “client”
modules can directly send requests to, and get
results from, other modules. Similar to data servers,
objects provide for standard mechanisms to access
and, thus, protect their data. Objects’ data is pro-
tected because their methods must be used to access
their data. Thus, application objects can be architec-
turally viewed as specialized data servers.

Common-Object Request Broker Architecture
(CORBA) provides a standard for high-level object-
to-object communications. Similar to most high-
level communications protocols, CORBA allows
programmers to write communications interface
code in source-level language. It also serves the
purpose of making all objects in the system appear
in the local address space, providing locality trans-
parency. This is especially important when it comes
to performing system upgrades, and in particular,
porting application code.

Thus, object-to-object communications support
message-sending between objects. This provides a
means for objects to “trigger methods” in other
objects. The data sent might be characterized
primarily as control messages that can also incorpo-
rate the data to be processed. That is, the messages
are generally requests for processing. The results of
the data processing may be sent directly back to the
requesting object or “put” into a database. This type
of object-to-object communications is typical
between two non-HCI-type applications.

However, there also exists actual object communica-
tions that are different than object-to-object com-
munications. Object communications is the sending
of complete objects, methods, and data. Objects are
sent for execution within another process (or
computing platform). This type of object communi-

199
1999 Issue—Future Surface Combatants: Engineering the 21st Century Navy

COMBAT SYSTEM ARCHITECTURE

cations is often used in distributed display systems.
That is, the objects sent are typically display or
multimedia-type objects. An example of object
communications is the sending of JAVA Applets.
Communicated objects typically are language-
limited in the types of functions that they are
capable of executing because of security reasons.

The basic functions of databases are data storage
and data distribution. Databases also provide data
access control. Databases provide a ready means for
backup, recovery, and recording of systems’ data.
Unlike data communications, databases can estab-
lish and maintain relationships between the data.

Storage of the data (object characteristics) associ-
ated with application objects can be viewed as
saving the state of the object. This is also referred to
as providing for object persistence. One of the
characteristics of objects is that they can be created
and destroyed during code execution. In addition,
object languages do not directly provide for object
persistence. This makes data storage an especially
important issue for combat system design where
object programming is used.

The COTS object-oriented database management
systems (DBMS’s) available today may have the
performance attributes required to support many
combat system applications. Most provide standard-
ized access through C++ extensions and have faster
data access times than relational DBMS’s. In addi-
tion, they can store complex data structures often
associated with combat system data.

A key reason for developing architecture is to
simplify the combat system design. One of the
primary means of achieving design simplification is
through modularization. For modern SW design,
there are three basic approaches to modularity, each
of which needs to be incorporated. The first ap-
proach is to partition the system into like function-
ality. The second approach is to partition the SW
into service layers. The third approach is to use
object-oriented design and programming.

Modularity also entails defining the interfaces
between system modules or boundaries. In effect,

the interfaces define the required functionality
and performance of the modules. Each interface
or interface type needs to be standardized. Inter-
face standards can be either adopted or defined.
However, it is important to note that specifying
particular system functions is a high-level design
activity. This is in contrast to defining the re-
quired system functionality, which can be better
characterized as analysis.

ARCHITECTURE DESIGN MODEL

Figure 2 presents a conceptual design for the control
SW of a ship combat system. This model indicates
the kind of functional partitioning that is necessary
for a conceptual design model. The conceptual
design model should identify the major subsystem
interfaces that need to be defined. It should be noted
that the design of each functional area requires very
different types of skills and knowledge, both techni-
cal and domain. Each arrow type in Figure 2 corre-
sponds to an interface type to be defined according
to the specifics of the system requirements. The
specifying of major module interface standards may
need to be part of the system architecture definition.

Applications Layer

The Applications Layer of Figure 2 is differentiated
from the Support Services Layer in that Applications
Layer functions or modules do not interface
directly with the OS. Application modules are
exclusively written in source-level code and inter-
face with the Support Services Layer via standard-
ized application programming interfaces (APIs).
The use of object programming for application
modules provides an additional data isolation
mechanism. Thus, there are a total of two mecha-
nisms—the object interfaces and the APIs—that
isolate application processes from data manage-
ment and communication services.

The System Executive provides high-level system
control of SW processes. The complexity of this
function can vary widely. In the case of simple
functionality, it provides for the launching, killing,
and status monitoring of processes. It may also

200
Naval Surface Warfare Center, Dahlgren Division Technical Digest

COMBAT SYSTEM ARCHITECTURE

provide for a system reconfiguration capability
upon system initialization. However, there are also
various types of dynamic system reconfiguration
capabilities that require more complex functionality.
One example of this is dynamic scaling of combat
control processes according to operational condi-
tions. Another example is the dynamic reallocation
of combat control processes (to computers) accord-
ing to system fault conditions.

As the complexity of the System Executive in-
creases, so does the degree of coupling of this
function with the combat control and display
applications. This is due to the increasing amount of
control and status information that must be com-
municated. In addition, the applications themselves

may require embedded functionality to support
process scaling and reallocation capabilities.

It cannot be assumed that the Combat Data Sup-
port system should have capabilities and perfor-
mance attributes for handling system control and
status information (unless by definition). That is,
the requirements to support the transport and
storage (e.g., triggers) of control data may be very
different than the requirements to support similar
handling of combat data. Because of their tight
coupling, these alternate data-support mechanisms
are characterized in Figure 2 as extensions to the
System Executive itself. Design of System Executive
type functions requires a high degree of program
design expertise.

Figure 2—Combat Control Design Concept

201
1999 Issue—Future Surface Combatants: Engineering the 21st Century Navy

COMBAT SYSTEM ARCHITECTURE

Figure 2 identifies the control functions of Figure 1
as part of the Combat Control applications. Stim &
Eval (Stimulation and Evaluation) functions have
been added to support system test, maintenance,
and training modes. Combat Control applications
are supported by (global) communications and data
management services in the Support Services Layer.

There are instances where tactical data is to be
displayed but need not be (temporarily) stored in
the data management system (Utility Services
Requests in Figure 2). An example of this are tactical
predictions in support of running “what if ” sce-
narios. The database schema cannot possibly
support all possible variations of this. However, such
direct interprocess communications between
dissimilar functions should occur through a distinct
and finite set of utility modules.

In the object paradigm, HCI Modules are typically
display objects that correspond to the tactical objects
(tactical picture, assessments, and plans) produced
by Combat Control application objects. The (data)
objects stored in the global data management system
thus can represent the saved state of both the HCI
and Combat Control objects. The desirability of
defining composite objects for tactical applications
and display is an area for research.

Each of the types of HCI Modules listed in Fig-
ure 2 can be designed as separate modules and
implemented as object classes. It is typically
desirable for combat systems to have reconfig-
urable consoles and displays. This capability can
allow for “transparent control” of combat system
functions from any station.

Support Services Layer

The Support Services Layer provides for OS services
and the combat system “middleware.” As shown in
Figure 2, these middleware services are partitioned
into Resource Management, Combat Data Support,
and HCI Support functions.

There are many ongoing efforts in the Navy aimed
at utilizing COTS OS and middleware services for

ship systems. Use of COTS in combat systems will
generally occur in a bottoms-up fashion. That is, it
will first occur for computers and networking
services, then OS services and, finally, middleware
services. In addition, “cotsification” will first occur
for those ship functions that are the least mission
critical and have the least stringent requirements for
real-time and fault tolerance.

Appropriate criteria for “make versus buy” decisions
need to be established for all system components.
The key in establishing these criteria is an under-
standing of the limitations of commercial equip-
ment and SW for military use, and the possible
impacts of these limitations on total system perfor-
mance. In addition, module reuse of any kind has
unique types of risk that must be identified, tracked,
and mitigated.

Resource Management functions are differentiated
in Figure 2 from System Executive functions by
their direct interface with either devices and/or OS
services. In this respect, Resource Management
functions can add significantly to system complex-
ity. The direct interfaces of Resource Management
functions to devices and the system OS makes its
development, maintenance, and testing particularly
difficult. Resource Management may include
monitoring and control functions for the purpose of
increasing a system’s fault tolerance characteristics.
However, to be effective, these functions must have
greater reliability than the combat system functions
that they manage.

The Combat Data Support functions of Figure 2
provide the system communications and data
management services. To the extent possible, these
functions should have as much built-in fault toler-
ance capability as possible in order to assure unin-
terrupted availability of combat system data. For
communications, this may involve automated link
and node failure detection and rerouting.

This also applies to the underlying communications
or data distribution capabilities of combat data
management system. For data management func-
tions, requirements for fault tolerance may impose
additional requirements. As an example, the data

202
Naval Surface Warfare Center, Dahlgren Division Technical Digest

COMBAT SYSTEM ARCHITECTURE

management system may require automated
capabilities to reestablish database consistency (of
replicated data stores) after link repair or rerouting.

An important architecture issue is that of using
(distributed) data management versus communi-
cations for combat systems integration. Use of
either databases or high-level communications
protocols promotes the structuring, definition,
and thus comprehension of ship’s data. However,
databases have the important additional capability
of maintaining relationships between data (or
data objects).

Systems that use global data management for data
distribution have the potential to be much more
integrated than those that rely heavily on
interprocess communications. This is because it is
difficult to establish and maintain relationships
between data produced by processes or subsystems
without a global (common) database. Federated
systems can be characterized as having subsystems
that are interconnected utilizing interprocess
communications alone.

Systemwide global data management imposes a
systems discipline on developers that both pro-
motes and supports integrated development. Global
data management inherently breaks down “stove-
pipes” by discouraging data ownership. This is
important in achieving the level of integration
required for global ship functions such as resource
management or multiwarfare common (consistent)
tactical picture formulation. A globally available
pool of data also provides incentives for developing
new functionality.

Combat system design is, in many ways, equivalent
to organizational design. Indeed, the combat system
HW and SW must reflect ship command and
operational structure. There are two fundamental
types of organizational structures: functional and
divisional. The divisional-type organizational
structure is also referred to as product-oriented
structure. In the division structure, the individual
divisions are fairly self-contained and incorporate
all the production-type functions needed for
product development. In the functional

organization, the functional units are pooled to
produce the various products of the organization.

Ship systems today are generally organized along
warfare areas, which corresponds to a
divisional-type organization. This is often referred to
as “stovepiping.” The primary advantage to this
structure is that it requires much less communica-
tion and coordination than the functional structure.
However, there are also disadvantages. The divisional
structure can have much functional redundancy
because of the need to be self-contained. The other
major disadvantage is that it is less flexible, requiring
reorganizations as product-lines change. As it relates
to combat systems, the divisional structure is less
flexible in supporting new warfare areas.

With the new data management and communica-
tions technologies available today, there is less
rationale for warfare area divisions. Ship control
centers can be supplemented with these integrating
data support systems. This supports a gradual
migration towards an integrated combat capability.
Combat system integration can provide capabilities
to support new warfare areas based primarily on
existing functionality.

It should be recognized that developing a communi-
cations and data management infrastructure to
support future missions and warfare capabilities has
certain risks associated with it. This is because the
performance requirements of such an infrastructure
are typically derived from mission requirements. In
addition, rapid advances in technology can quickly
cause existing systems to become obsolete. However,
these risks are an inherent part of the development
of any data-support infrastructure. Indeed, the
telecommunications industry must continuously
deal with this type of technology risk.

Figure 2 also identifies HCI Support as part of the
combat system Support Services Layer. HCI Support
provides functional-type services for the HCI
modules. HCI Support functional modules should
also be architecturally layered in order to simplify
design. For portable operating system interface
(POSIX)-compliant systems, the lowest layers would
typically be X-Windows and MOTIF. On top of this

203
1999 Issue—Future Surface Combatants: Engineering the 21st Century Navy

COMBAT SYSTEM ARCHITECTURE

layer would be display formatting or similar display
control functions. These functions include:

✦ Control functions for HCI layout, menus, and
variable action buttons

✦ Operational support functions for handling alerts
and status information, and providing help services

✦ Drawing functions for environmental features/
maps and control panels

A challenge for the Navy is to begin developing
standard libraries of these HCI Support modules.
Each module should be kept simple (small), be well
tested and documented, and maintained under
configuration control. These modules could be used
for the development of both ship systems and
Advanced Development Models (ADMs). This
would reduce much of the costs associated with
prototype development and ADM transitions, and aid
in new systems integration at the operational level.

Operating System Services

The Support Services Layer in Figure 2 is supported
by OS services. These services include the comput-
ing platform OS and various OS extensions, such as
file management services. Combat systems have
special requirements for real-time, fault tolerant,
and in some cases, secure computing. Each architec-
tural layer must have capabilities in these areas in
order to support the next higher layer. In those cases
where the machine OS does not directly support
certain aspects of system performance, it can impose
the need for complex functionality for both the
Support Services and Applications layers.

It has been theorized that greater overall system
performance-to-cost could be achieved if the
various performance aspects of a combat system
could be made flexible. That is, if the various
performance aspects of the system (real-time, fault
tolerance, and security) could be balanced in (near)
real time according to operational conditions and/or
damage-conditions. This has been termed Quality-
of-Service (QoS). QoS supports the notion of
adaptable system services capable of arbitrating

competing requests for system resources. However,
achieving this advanced system concept depends
heavily on the capabilities of the OS.

To ensure that future commercial Os’s incorporate
capabilities that are required by military
applications, the Navy must adopt an “open” OS
interface standard such as POSIX. The minimal
requirement for “openness” is that any interested
organizations can participate in the development of
the (interface) standard. In addition, the Navy
should participate in these standards committees as
necessary to help ensure that they will incorporate
the unique capabilities required for combat systems.
Participation in standards committees requires very
little resources and supports the increasing use of
COTS in military systems.

ARCHITECTURE IMPLEMENTATION ELEMENTS

For developmental items, implementation is defined
here as meaning detailed design. In the case of
nondevelopmental items, implementation refers to
the allocation of defined components to design
elements. It might be difficult to imagine cases
where it would be appropriate to have implementa-
tion details incorporated into the combat system
architecture. Indeed, the general characterization
of architecture as a top-level design seems to
discount this possibility.

However, in the C4I community, architecture is
often defined in terms of actual implementation.
For example, the Defense Information Infrastruc-
ture Common Operating Environment (DII-COE)
specifies the use of developed “common modules”
and a specific, networked computing design. Even
application modules, such as the tactical decision
aids that are part of Joint Maritime Command
Information System (JMCIS), are specified by
DII-COE to be used for certain functions.

Thus, it is not unprecedented to have implementa-
tion-specific requirements levied on military
systems. In addition, there may be justifiable
reasons for wanting to do so. Development efforts
can be greatly reduced if only application modules

204
Naval Surface Warfare Center, Dahlgren Division Technical Digest

COMBAT SYSTEM ARCHITECTURE

need to be developed. For example, Microsoft
Windows is a COE for PC applications. Referring to
Figure 2, this environment roughly corresponds to
all functions except those of Combat Control and
HCI Modules. Thus, a COE can provide much
more than just OS services.

However, the appropriateness of specifying use of
particular standards, components, and technologies
depends heavily on the requirements of the combat
system. For the C4I systems of today, their main role
is in providing communications and data manage-
ment services. In addition, timing requirements are
relatively lax. Thus, for C4I systems, implementa-
tion details may be appropriate for establishing
system architecture.

In the case of AAW systems, real-time requirements
for the applications impose real-time requirements
on other system components. This is certainly the
case for the computing infrastructure. However, real-
time requirements also impact the design the HCI
and the supporting graphics utilities. The HCI must
provide real-time display of radar sweeps or other fast
graphics displays. In addition, operator interactions
with tactical consoles must be fast. This is in contrast
to the analysis-oriented HCIs of C4I systems. For
example, JMCIS incorporates pull-down menus and
other HCI features that cover the situational displays
that can require much time to open and close.

Mandating the use of particular design or imple-
mentation elements must be done only with careful
consideration. However, providing information on
component technologies and interface standards is
always useful to the architects and designers of a
combat system. It can be especially useful when
additional information on standards is provided
regarding their use in a particular domain (military
systems). This kind of information is often referred
to as “profiling” a standard. Although profiles might
not be considered a system architecture element,
they can be extremely useful for designing and
implementing combat systems.

CONCLUSION

Combat system architecture definition is the
precursor to design. It conveys system
requirements for what the system must do that
include functional, data, and control character-
istics. Combat system architecture may have
elements of functional analysis, conceptual design,
or implementation. Both the requirements that are
conveyed and the specific types of elements that
are used to convey them depend very much on the
requirements themselves.

In general, functional and process analysis models
should be used to specify combat system require-
ments for functionality. Design elements of architec-
ture identify specific functions and their organiza-
tion. Models of architectural layers, functional
partitionings, and (ultimately) object class struc-
tures are developed to convey combat system design
requirements. In each case, interfaces between
modules and/or partitionings are identified and
defined. Combat system architecture incorporates
design elements as needed to convey the required
quality attributes of the system.

In some cases it may be desirable to include imple-
mentation details in the architecture definition.
However, it should be recognized that this is effec-
tively implementing parts of the system prior to
design. Defining ship middleware that is capable of
supporting multiple combat systems is one area
where this may be justified. Middleware is the key to
integrating existing combat system functionality in
supporting future missions and warfare areas.

BIBLIOGRAPHY

Pollard, J.R., Combat Systems Vision 2030: A Combat
System Architecture for Future Surface Combatants,
Naval Surface Warfare Center, Dahlgren Division
Technical Report TR 91-607, Dahlgren, VA,
Sep 1991.

205
1999 Issue—Future Surface Combatants: Engineering the 21st Century Navy

COMBAT SYSTEM ARCHITECTURE

THE AUTHOR

MR. JAMES D. HORNER

Mr. James D. Horner received B.S.E.E. and M.S.E.E. degrees in computer engineering and an
M.B.A. in information systems from the University of Maryland in May 1983, December
1986, and May 1991, respectively. From 1991 to 1994, he served as Deputy Director of ASW
Technology Programs at the Naval Surface Warfare Center, Dahlgren Division, White Oak.
Since then, Mr. Horner has been providing systems engineering expertise for the
transitioning of combat system technologies and related development processes for
various Navy technology programs. He is a member of the Fredericksburg Chapter of the
International Council on Systems Engineering.

	TABLE OF CONTENTS
	A Note from the Commander
	Guest Editor's Introduction
	21st CENTURY FORCE CONTEXT
	Tsunami-2050: A Naval Operational Concept and Force Design for the 21st Century

	NEW CAPABILITIES
	LAND ATTACK
	Operational Employment Challenges facing Naval Fires in the 21st Century
	Active Jamming Cancellation Concept for Extended Range Guided Munitions
	A Common Land Attack Warfare Systems (CLAWS) for Aegis Combatants
	Naval Fires from the Sea for supporting Littoral Operations: Counterbattery

	OPERATING IN THE LITTORAL BATTLESPACE
	Naval Ship Self-Defense Weapon Littoral Warfighting Performance Issues
	Future Surface Combatant Chemical and Biological Warfare Protection
	Radio detection and Ranging (RADAR)--Past, Present, and Future
	Unmanned Vehicles and the Tactical Control System for the DD21

	NETWORK CENTRICITY
	C3I and Tactical Picture Compilation: detect, Asses, Allocate, and Respond
	Integrated Topside Design
	Multilevel Security Without Encryption

	NEW METHODOLOGIES
	TOTAL SHIP DESIGN
	Total Ship Systems Engineering
	Combat System Architecture
	Optimized Crews for the 21st Century

	EFFICIENCY THROUGH TECHNOLOGY
	Controlling the Controller: The Unrelenting Challenge in Digital Shipboard Automation
	Rehosting the Aegis Embedded Trainer in Commercial Products
	The Role of Switching in Engineering Surface Combatants of the Future

